Think Python How To Think Like A Computer Scientist Algorithms play an important role in both the science and practice of computing. To optimally use algorithms, a deeper understanding of their logic and mathematics is essential. Beyond traditional computing, the ability to apply these algorithms to solve real-world problems is a necessary skill, and this is what this book focuses on. The goal of this book is to teach you to think like a computer scientist. This way of thinking combines some of the best features of mathematics, engineering, and natural science. Like mathematicians, computer scientists use formal languages to denote ideas (specifically computations). Like engineers, they design things, assembling components into systems and evaluating tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems, form hypotheses, and test predictions. The single most important skill for a computer scientist is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills. That's why this chapter is called, The way of the program. On one level, you will be learning to program, a useful skill by itself. On another level, you will use programming as a means to an end. As we go along, that end will become clearer. Ever wished you could learn Python from a book? Head First Python is a complete learning experience for Python that helps you learn the language through a unique method that goes beyond syntax and how-to manuals, helping you understand how to be a great Python programmer. You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you. We think your time is too valuable to waste struggling with new. Python for Software DesignHow to Think Like a Computer ScientistCambridge University Press Learn how to program with Python from beginning to end. This book is for beginners who want to get up to speed quickly and become intermediate programmers fast! Get a comprehensive, in-depth introduction to the core Python language with this hands-on book. Based on author Mark Lutz's popular training course, this updated fifth edition will help you quickly write efficient, high-quality code with Python. It's an ideal way to begin, whether you're new to programming or a professional developer versed in other languages. Complete with quizzes, exercises, and helpful illustrations, this easy-to-follow, self-paced tutorial gets you started with both Python 2.7 and 3.3— the latest releases in the 3.X and 2.X lines—plus all other releases in common use today. You'll also learn some advanced language features that recently have become more common in Python code. Explore Python's major built-in object types such as numbers, lists, and dictionaries Create and process objects with Python statements, and learn Python's general syntax model Use functions to avoid code redundancy and package code for reuse Organize statements, functions, and other tools into larger components with modules Dive into classes: Python's object-oriented programming tool for structuring code Write large programs with Python's exception-handling model and development tools Learn advanced Python tools, including decorators, descriptors, metaclasses, and Unicode processing Large print. More physicists today are taking on the role of software developer as part of their research, but software development isn't always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. You'll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures If you're just learning how to program, Julia is an excellent JIT-compiled, dynamically-typed language with a clean syntax. This hands-on guide uses Julia (version 1.0) to walk you through programming one step at a time, beginning with basic programming concepts before moving on to more advanced capabilities, such as creating new types and multiple dispatch. Designed from the beginning for high performance, Julia is a general-purpose language not only ideal for numerical analysis and computational science, but also for web programming or scripting. Through exercises in each chapter, you'll try out programming concepts as you learn them. Think Julia is ideal for students at the high school or college level, as well as self-learners, home-schooled students, and professionals who need to learn programming basics. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand types, methods, and multiple dispatch Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design and data structures through case studies Python Essential Reference is the definitive reference guide to the Python programming language — the one authoritative handbook that reliably untangles and explains both the core Python language and the most essential parts of the Python library. Designed for the professional programmer, the book is concise, to the point, and highly accessible. It also includes detailed information on the Python library and many advanced subjects that is not available in either the official Python documentation or any other single reference source. Thoroughly updated to reflect the significant new programming language features and library modules that have been introduced in Python 2.6 and Python 3, the fourth edition of Python Essential Reference is the definitive guide for programmers who need to modernize existing Python code or who are planning an eventual migration to Python 3. Programmers starting a new Python project will find detailed coverage of contemporary Python programming idioms. This fourth edition of Python Essential Reference features numerous improvements, additions, and updates: Coverage of new language features, libraries, and modules Practical coverage of Python's more advanced features including generators, coroutines, closures, metaclasses, and decorators Expanded coverage of library modules related to concurrent programming including threads, subprocesses, and the new multiprocessing module Up-to-the-minute coverage of how to use Python 2.6's forward compatibility mode to evaluate code for Python 3 compatibility Improved organization for even faster answers and better usability Updates to reflect modern Python programming style and idioms Updated and improved example code Deep coverage of low-level system and networking library modules — including options not covered in This book is designed to teach people to program even if they have no prior experience. Chuck as your guide, there's something interesting about everything (...except maybe jackhammers) ## the standard documentation Updated for both Python 3.4 and 2.7, this guide provides concise information on Python types and statements, special method names, built-in functions and exceptions, commonly used standard library modules, and other prominent Python tools.--From back cover. The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Mattab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python 'on the streets' could be a little jealous of students who have the opportunity to take a course out of Langtangen's Primer." John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 "This fourth edition is a wonderful, inclusive textbook that covers pretty much everything o book in various electronic formats and a self-paced free online course where you can explore the course materials. All the supporting materials for the book are available under open and remixable licenses. The second edition of the best-selling Python book in the world (over 1 million copies sold!). A fast-paced, no-nonsense guide to programming in Python. Updated and thoroughly revised to reflect the latest in Python code and practices. Python Crash Course is the world's best-selling guide to the Python programming language. This fast-paced, thorough introduction to programming with Python will have you writing programs, solving problems, and making things that work in no time. In the first half of the book, you'll learn basic programming concepts, such as variables, lists, classes, and loops, and practice writing clean code with exercises for each topic. You'll also learn how to make your programs interactive and test your code safely before adding it to a project. In the second half, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, a set of data visualizations with Python's handy libraries, and a simple web app you can deploy online. As you work through the book, you'll learn how to: • Use powerful Python libraries and tools, including Pygame, Matplotlib, Plotly, and Django • Make 2D games that respond to keypresses and mouse clicks, and that increase in difficulty • Use data to generate interactive visualizations • Create and customize web apps and deploy them safely online • Deal with mistakes and errors so you can solve your own programming problems If you've been thinking about digging into programming, Python Crash Course will get you writing real programs fast. Why wait any longer? Start your engines and code! Josh Clark and Chuck Bryant started the podcast Stuff You Should Know back in 2008 because they were curious about the world around them, curious about what they might have missed in their formal educations, and curious to dig deeper on stuff they thought they understood. As it turns out, they aren't the only curious ones. They've since amassed a rabid fan base, making Stuff You Should Know one of the most popular podcasts in the world. Armed with their inquisitive natures and a passion for sharing, they research and discuss a wide variety of topics-always working to uncover the weird, fascinating, delightful, or unexpected pieces of any given subject, and then talking about it together in an accessible and humorous way. The pair have now taken their near-boundless "whys" and "hows" from your earbuds to the pages of a book for the first time-and with it comes loads of new content, covering subjects about which they've long wondered or wanted to explore in greater detail. Follow along as they dig into the underlying stories and interesting ways things fit into the world, touching on everything from the origin of Murphy beds, to the history of facial hair, to the psychology of being lost. An additional layer of visual material allows the duo to further embellish their engaging storytelling and bring these topics to life in a snappy new way-including charts and graphs, illustrations, and sidebars for rabbit-hole tangents and wandering digressions. Have you ever wondered about the world around you, and wished to see the magic in everyday things? Come get curious with Stuff You Should Know. With Josh and Currently used at many colleges, universities, and high schools, this hands-on introduction to computer science is ideal for people with little or no programming experience. The goal of this concise book is not just to teach you Java, but to help you think like a computer scientist. You'll learn how to program—a useful skill by itself—but you'll also discover how to use programming as a means to an end. Authors Allen Downey and Chris Mayfield start with the most basic concepts and gradually move into topics that are more complex, such as recursion and object-oriented programming. Each brief chapter covers the material for one week of a college course and includes exercises to help you practice what you've learned. Learn one concept at a time: tackle complex topics in a series of small steps with examples Understand how to formulate problems, think creatively about solutions, and write programs clearly and accurately Determine which development techniques work best for you, and practice the important skill of debugging Learn relationships among input and output, decisions and loops, classes and methods, strings and arrays Work on exercises involving word games, graphics, puzzles, and playing cards If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. By working with a single case study throughout this thoroughly revised book, you'll learn the entire process of exploratory data analysis—from collecting data and generating statistics to identifying patterns and testing hypotheses. You'll explore distributions, rules of probability, visualization, and many other tools and concepts. New chapters on regression, time series analysis, survival analysis, and analytic methods will enrich your discoveries. Develop an understanding of probability and statistics by writing and testing code Run experiments to tes An excellent supplement to Computer Science Illuminated, as well as a superb primer, Computer Science: The Python Programming Language offers a clear introduction to this user-friendly language. This overview describes the fundamentals of the interactive Python environment, the structure of Python programs, how Python supports object-oriented programming, and much more. Beginning programmers will be relieved that this modern programming language is not only easy to learn but easy to use as well! Want to learn how to program and think like a computer scientist? This practical guide gets you started on your programming journey with the help of Perl 6, the younger sister of the popular Perl programming language. Ideal for beginners, this hands-on book includes over 100 exercises with multiple solutions, and more than 1,000 code examples so you can quickly practice what you learn. Experienced programmers—especially those who know Perl 5—will also benefit. Divided into two parts, Think Perl 6 starts with basic concepts that every programmer needs to know, and then focuses on different programming paradigms and some more advanced programming techniques. With two semesters' worth of lessons, this book is the perfect teaching tool for computer science beginners in colleges and universities. Learn basic concepts including variables, expressions, statements, functions, conditionals, recursion, and loops Understand commonly used basic data structures and the most useful algorithms Dive into object-oriented programming, and learn how to construct your own types and methods to extend the language Use grammars and regular expressions to analyze textual content Explore how functional programming can help you make your code simpler and more expressive If you know how to program with Python and also know a little about probability, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you'll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this book's computational approach helps you get a solid start. Use your existing programming skills to learn and understand Bayesian statistics Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome. An introduction to coding for complete beginners, this friendly and accessible book will teach children the basics of Python (a widely used programming language), allowing them to get inside the code of their computer and create simple games and animations on screen. If you're a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that's clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You'll explore the important classes in the Java collections framework (JCF), how they're implemented, and how they're expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes. Thoroughly revised for the latest version of Python, this book explains basic concepts in a clear and explicit way that takes very seriously one thing for granted-that the reader knows nothing about computer programming. Addressed to anyone who has no prior programming knowledge or experience, but a desire to learn programming with Python, it teaches the first thing that every novice programmer needs to learn, which is Algorithmic Thinking. ?Igorithmic Thinking involves more than just learning code. It is a problem-solving process that involves learning how to code. This edition contains all the popular features of the previous edition and adds a significant number of exercises, as well as extensive revisions and updates. Apart from Python's lists, it now also covers dictionaries, while a brand new section provides an effective introduction to the next field that a programmer needs to work with, which is Object Oriented Programming (OOP). This book has a class course structure with questions and exercises at the end of each chapter so you can test what you have learned right away and improve your comprehension. With 250 solved and 450 unsolved exercises, 475 true/false, about 150 multiple choice, and 200 review questions and crosswords (the solutions and the answers to which can be found on the Internet), this book is ideal for novices or average programmers, for self-study high school students first-year college or university students teachers professors anyone who wants to start learning or teaching computer programming using the proper conventions and techniques Shows how to write, debug, and run a Perl program, describes CGI scripting and data manipulation, and describes scalar values, basic operators, and associative arrays. The real challenge of programming isn't learning a language's syntax—it's learning to creatively solve problems so you can build something great. In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to: —Split problems into discrete components to make them easier to solve —Make the most of code reuse with functions, classes, and libraries —Pick the perfect data structure for a particular job —Master more advanced programming tools like recursion and dynamic memory —Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer. Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet. Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software. This book uses the Python 3 language. The earlier Python 2 version of this book is titled "Python for Informatics: Exploring Information". There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course. This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification. If you need help writing programs in Python 3, or want to update older Python 2 code, this book is just the ticket. Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms. Inside, you'll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works. Topics include: Data Structures and Algorithms Strings and Text Numbers, Dates, and Times Iterators and Generators Files and I/O Data Encoding and Processing Functions Classes and Objects Metaprogramming Modules and Packages Network and Web Programming Concurrency Utility Scripting and System Administration Testing, Debugging, and Exceptions C Extensions If you want to learn how to program, working with Python is an excellent way to start. This hands-on guide takes you through the language a step at a time, beginning with basic programming concepts before moving on to functions, recursion, data structures, and object-oriented design. This second edition and its supporting code have been updated for Python 3. Through exercises in each chapter, you'll try out programming concepts as you learn them. Think Python is ideal for students at the high school or college level, as well as self-learners, home-schooled students, and professionals who need to learn programming basics. Beginners just getting their feet wet will learn how to start with Python in a browser. Start with the basics, including language syntax and semantics Get a clear definition of each programming concept Learn about values, variables, statements, functions, and data structures in a logical progression Discover how to work with files and databases Understand objects, methods, and object-oriented programming Use debugging techniques to fix syntax, runtime, and semantic errors Explore interface design, data structures, and GUI-based programs through case studies If you understand basic mathematics and know how to program with Python, you're ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they're applied in the real world. In the first chapter alone, you'll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You'll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey. If you know how to program, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical formulas, using discrete probability distributions rather than continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer and you'll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but there aren't many resources available to help beginners. Based on undergraduate classes taught by author Allen B. Downey, this book's computational approach helps you get a solid start. Use your programming skills to learn and understand Bayesian statistics Work with problems involving estimation, prediction, decision analysis, evidence, and Bayesian hypothesis testing Get started with simple examples, using coins, dice, and a bowl of cookies Learn computational methods for solving real-world problems Python Crash Course is a fast-paced, thorough introduction to Python that will have you writing programs, solving problems, and making things that work in no time. In the first half of the book, you'll learn about basic programming concepts, such as lists, dictionaries, classes, and loops, and practice writing clean and readable code with exercises for each topic. You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders—inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online. As you work through Python Crash Course you'll learn how to: -Use powerful Python libraries and tools, including matplotlib, NumPy, and Pygal –Make 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progresses –Work with data to generate interactive visualizations —Create and customize Web apps and deploy them safely online —Deal with mistakes and errors so you can solve your own programming problems If you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code! Uses Python 2 and 3 Python for Software Design is a concise introduction to software design using the Python programming language. The focus is on the programming process, with special emphasis on debugging. The book includes a wide range of exercises, from short examples to substantial projects, so that students have ample opportunity to practice each new concept. Enhances Python skills by working with data structures and algorithms and gives examples of complex systems using exercises, case studies, and simple explanations. Python's simplicity lets you become productive quickly, but this often means you aren't using everything it has to offer. With this hands-on guide, you'll learn how to write effective, idiomatic Python code by leveraging its best—and possibly most neglected—features. Author Luciano Ramalho takes you through Python's core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time. Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3. This book covers: Python data model: understand how special methods are the key to the consistent behavior of objects Data structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode age Functions as objects: view Python functions as first-class objects, and understand how this affects popular design patterns Object-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritance Control flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packages Metaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work CONCRETE ABSTRACTIONS offers students a hands-on, abstraction-based experience of thinking like a computer scientist. This text covers the basics of programming and data structures, and gives first-time computer science students the opportunity to not only write programs, but to prove theorems and analyze algorithms as well. Students learn a variety of programming styles, including functional programming, assembly-language programming, and object-oriented programming (OOP). While most of the book uses the Scheme programming language, Java is introduced at the end as a second example of an OOP system and to demonstrate concepts of concurrent programming. "Robert McCloskey's unusual and stunning pictures have long been a delight for their fun as well as their spirit of place."—The Horn Book Mrs. Mallard was sure that the pond in the Boston Public Gardens would be a perfect place for her and her eight ducklings to live. The problem was how to get them there through the busy streets of Boston. But with a little help from the Boston police, Mrs. Mallard and Jack, Kack, Nack, Ouack, Pack, and Quack arive safely at their new home. This brilliantly illustrated, amusingly observed tale of Mallards on the move has won the hearts of generations of readers. Awarded the Caldecott Medal for the most distinguished American picture book for children in 1941, it has since become a favorite of millions. This classic tale of the famous Mallard ducks of Boston is available for the first time in a full-sized paperback edition. Make Way for Ducklings has been described as "one of the merriest picture books ever" (The New York Times). Ideal for reading aloud, this book deserves a place of honor on every child's bookshelf. "This delightful picture book captures the humor and beauty of one special duckling family. ... McClosky's illustrations are brilliant and filled with humor. The details of the ducklings, along with the popular sights of Boston, come across wonderfully. The image of the entire family proudly walking in line is a classic."—The Barnes & Noble Review "The quaint story of the mallard family's search for the perfect place to hatch ducklings. ... For more than fifty years kids have been entertained by this warm and wonderful story."—Children's Literature hand. There is no prior programming experience required and the book is loved by liberal arts majors and geeks alike. If you've ever spent hours renaming files or updating hundreds of spreadsheet cells, you know how tedious tasks like these can be. But what if you could have your computer do them for you? In this fully revised second edition of the best-selling classic Automate the Boring Stuff with Python, you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand--no prior programming experience required. You'll learn the basics of Python and explore Python's rich library of modules for performing specific tasks, like scraping data off websites, reading PDF and Word documents, and automating clicking and typing tasks. The second edition of this international fan favorite includes a brand-new chapter on input validation, as well as tutorials on automating Gmail and Google Sheets, plus tips on automatically updating CSV files. You'll learn how to create programs that effortlessly perform useful feats of automation to: *Search for text in a file or across multiple files * Create, update, move, and rename files and folders * Search the Web and download online content * Update and format data in Excel spreadsheets of any size * Split, merge, watermark, and encrypt PDFs * Send email responses and text notifications * Fill out online forms Step-by-step instructions walk you through each program, and updated practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks. Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in Automate the Boring Stuff with Python, 2nd Edition. Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Tiny Python Projects takes you from amateur to Pythonista as you create 22 bitesize programs. Each tiny project teaches you a new programming concept, from the basics of lists and strings right through to regular expressions and randomness. Summary A long journey is really a lot of little steps. The same is true when you're learning Python, so you may as well have some fun along the way! Written in a lighthearted style with entertaining exercises that build powerful skills, Tiny Python Projects takes you from amateur to Pythonista as you create 22 bitesize programs. Each tiny project teaches you a new programming concept, from the basics of lists and strings right through to regular expressions and randomness. Along the way you'll also discover how testing can make you a better programmer in any language. About the technology Who says learning to program has to be boring? The 21 activities in this book teach Python fundamentals through puzzles and games. Not only will you be entertained with every exercise, but you'll learn about text manipulation, basic algorithms, and lists and dictionaries as you go. It's the ideal way for any Python newbie to gain confidence and experience. About the book The projects are tiny, but the rewards are big: each chapter in Tiny Python Projects challenges you with a new Python program, including a password creator, a word rhymer, and a Shakespearean insult generator. As you complete these entertaining exercises, you'll graduate from a Python beginner to a confident programmer—and you'll have a good time doing it! What's inside Write command-line Python programs Manipulate Python data structures Use and control randomness Write and run tests for programs and functions Download testing suites for each project About the reader For readers with beginner programming skills. About the author Ken Youens-Clark is a Senior Scientific Programmer at the University of Arizona. He has an MS in Biosystems Engineering and has been programming for over 20 years. Table of Contents 1 How to write and test a Python program 2 The crow's nest: Working with strings 3 Going on a picnic: Working with lists 4 Jump the Five: Working with dictionaries 5 Howler: Working with files and STDOUT 6 Words count: Reading files and STDIN, iterating lists, formatting strings 7 Gashlycrumb: Looking items up in a dictionary 8 Apples and Bananas: Find and replace 9 Dial-a-Curse: Generating random insults from lists of words 10 Telephone: Randomly mutating strings 11 Bottles of Beer Song: Writing and testing functions 12 Ransom: Randomly capitalizing text 13 Twelve Days of Christmas: Algorithm design 14 Rhymer: Using regular expressions to create rhyming words 15 The Kentucky Friar: More regular expressions 16 The Scrambler: Randomly reordering the middles of words 17 Mad Libs: Using regular expressions 18 Gematria: Numeric encoding of text using ASCII values 19 Workout of the Day: Parsing CSV files, creating text table output 20 Password strength: Generating a secure and memorable password 21 Tic-Tac-Toe: Exploring state 22 Tic-Tac-Toe redux: An interactive version with type hints Copyright: 74543e22b6c34be49577da63e3296339